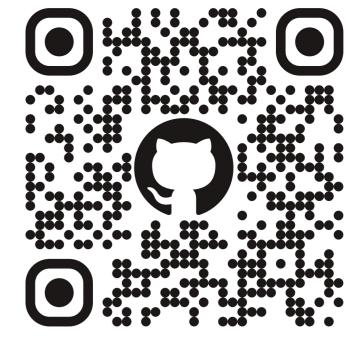
A Gaze-grounded Visual Question Answering Dataset for Clarifying Ambiguous Japanese Questions

Shun Inadumi^{1,2}, Seiya Kawano^{2,1}, Akishige Yuguchi^{3,2} Yasutomo Kawanishi^{2,1}, Koichiro Yoshino^{2,1}


- 1. Nara Institute of Science and Technology
- 2. Guardian Robot Project, RIKEN, 3. Tokyo University of Science

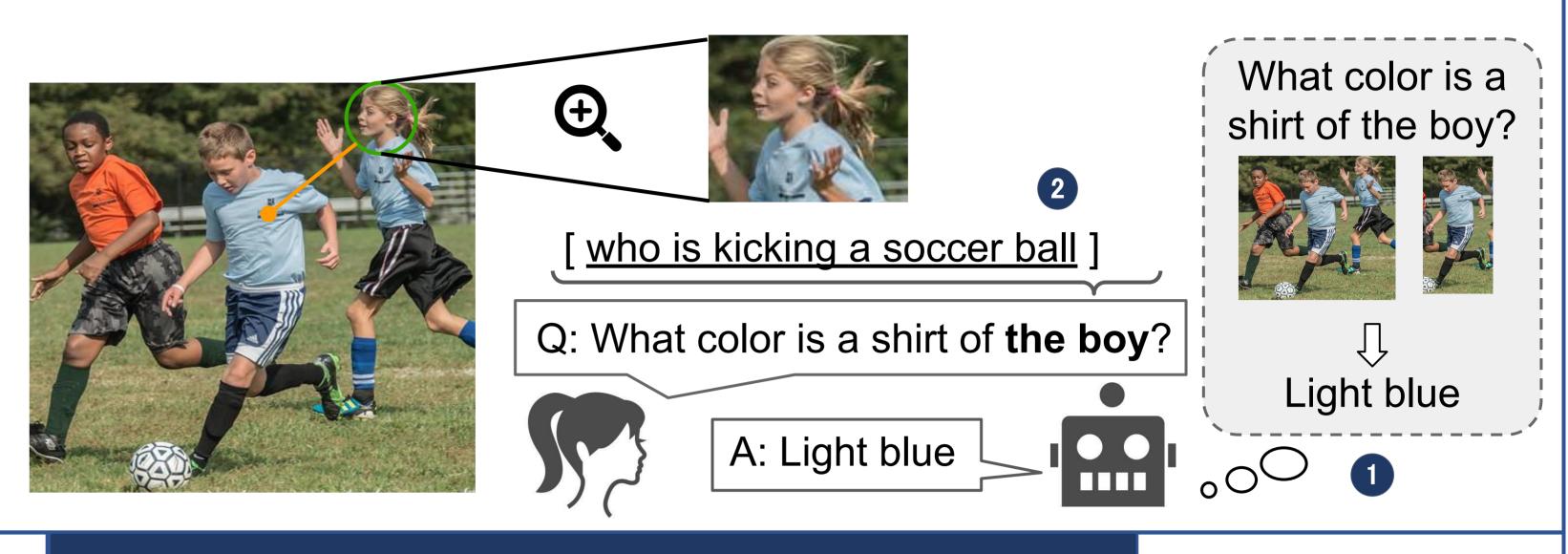
Guardian Robot Project

Dataset link

Motivation

Backgrounds:

- Situated conversations often contain ambiguities [Taniguchi+, AR 2019] Caused by directives and ellipsis subjective or objective
- Referring to user gaze is a key idea to resolve this problem Deal with this problem in VQA setting [Antol+, ICCV 2015]


Contributions:

- Construct a Gaze-grounded VQA Dataset (GazeVQA) A VQA task to incorporate with gaze context
- Propose a VQA model for integrating gaze targets by extending existing VQA models

Research Questions:

Can gaze context;

- Improve the accuracy of VQA?
- Clarify an ambiguous question?

GazeVQA

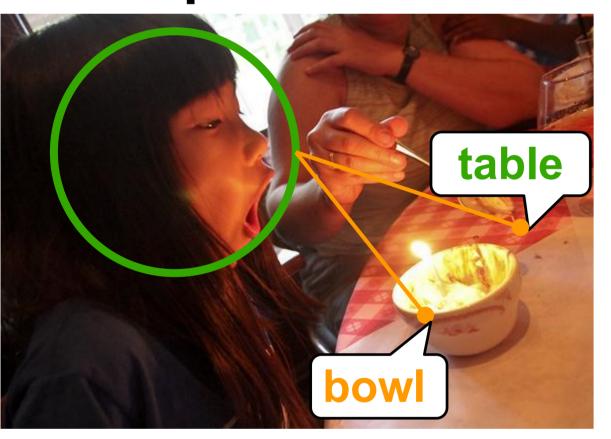
Overview:

10,760 images :

An image shows a first-person view from the system side.

17,276 QA pairs :

A user asks an ambiguous questions (AQs) about user gaze targets.


User gaze annotation :

Source and target of gaze in GazeFollow [Recasens+, NIPS 2015]

Object annotation:

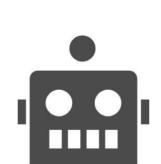
Object label in COCO [Lin+, ECCV 2014]

Examples:

GazeVQA test-set has clarified questions (CQs).

Evaluation Metrics:

Acc : VQA score


• Bs : BERT score

Q₁: What is lit up [in the bowl]?

Q₂: What is placed on top of it [table]?

A₁: candle A_2 : bowl

Model

A: Light blue Inputs: Image, Question, Gaze Rol Output : Answer Autoregressive Text-Decoder FFN Adapter LN Self-Attn Q: What color is a Transformer shirt of the boy? Blocks Linear CLIP Adapter Linear

- Predict region of interest (Rol) from source of gaze and image
- Integrate of image and gaze target features using element-wise affine transformation [Dumoulin+, Distill 2018]

Results

Settings:

Datasets:

- Japanese Captions [Yoshihara+, ACL 2017]
- Japanese VQA [Shimizu+, COLING 2018]
- GazeVQA

train: valid: test = 13,785: 1,811: 1,680

Baseline: ClipCap [Mokady+, 2021]

CLIP RN×4 [Radford+, ICML 2021] + GPT-2 [Radford+, 2021]

Does our model outperform the baseline?

Setup:

Report 5-trial results

|θ|: Trainable parameters [M]

Baseline : ClipCap

Our model : ClipCap + Adapter

Models		θ	Acc	Bs
Fine-tuned Decoder & Trans. Blocks	ClipCap	410	36.80	81.75
	ClipCap + Adapter	426	34.15	81.28
Fine-tuned Trans. Blocks	ClipCap	74	35.83	81.21
	ClipCap + Adapter	90	38.11	81.71
FT. Adapter Only	ClipCap + Adapter	16	39.03	81.92

Our model, when the adapter are well-trained, outperforms a baseline

What factors contribute to improve GazeVQA task?

Qualitative Results:

User: green circle, Pred. Rol: orange box, Ground truth: blue box

: What is this man wearing?

: A (Gray) Suit

Pred.: A Coat; A Suit; A Shirt

✓ GT : A Suit

Our model, which inputs GT to adapter provides consistent answer to AQs about attributes of gaze targets.

Evaluation with Clarified Questions (CQs):

- Discuss on modern V&L models [Cho+, ICML2021; OpenAI, 2023]
- Without fine-tuned GazeVQA
- Acc improved 1-5 points

An approach to rewrite

AQ to CQ is also effective for GazeVQA task.

Models	Q	Acc
ClipCap	AQ	21.55
[Mokady+, 2021]	CQ	25.11
VL-T5	AQ	32.33
[Cho+, ICML2021]	CQ	34.11
GPT-4V	AQ	34.11
[OpenAI, 2023]	CQ	39.33

Future Directions

Apply our model to an actual system, such as a robot

Develop a method for clarifying questions (RQ 2)