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● TRR: Textual Reference Resolution: 
○ Identify textual reference relations between phrases
○ TRR consists of coreference resolution, predicate-argument structure analysis    

                                                                  and bridging anaphora resolution.

Example of the system analyzes a two-person dialogue

FPV of the System
…

PAS (DAT Case)Coreference (=)
this

PAS (ACC Case)PAS (NOM Case)

take take take

Would you take me this ?

Thank you !

P1: Person1 P2: Person2

Not at all.

the coffee cup P2
the coffee cup P1

Understanding References in Dialogue Text

Yes. The coffee cup, 
right ? 
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● MRR: Multimodal Reference Resolution [Ueda+, 2024] : 
○ Identify phrase-to-objects reference relations 
○ Direct reference and Indirect reference

…

Thank you !

P1: Person1 P2: Person2

Not at all.

Understanding References in Visually Grounded Dialogues

Yes. The coffee cup, 
right ? 

FPV of the System

Example of the system analyzes a two-person dialogue

PAS (DAT Case)Coreference (=)
this

PAS (ACC Case)PAS (NOM Case)

take take take
the coffee cup P2

the coffee cup P1

Would you take me this ?



4

● Multimodal Reference Resolution [Ueda+, 2024] : 
○ Identify phrase-to-objects reference relations 
○ Direct reference and Indirect reference

…

Thank you !

P1: Person1 P2: Person2

Not at all.

Understanding References in Visually Grounded Dialogues

Yes. The coffee cup, 
right ? 

FPV of the System

Example of the system analyzes a two-person dialogue

PAS (DAT Case)Coreference (=)
this

PAS (ACC Case)PAS (NOM Case)

take take take
the coffee cup P2

the coffee cup P1

Would you take me this ?

Phrase grounding [Plummer+, 2015] refers to the task 
of predicting only this type of reference. 



Why is MRR important?
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MRR enables systems to understand dialogue events 
— such as "who does what to whom"— linked to real-world objects.

…

Thank you !

P1: Person1 P2: Person2

Not at all.

Yes. The coffee cup, 
right ? 

FPV of the System

Example of the system analyzes a two-person dialogue

PAS (DAT Case)Coreference (=)
this

PAS (ACC Case)PAS (NOM Case)

take take take
the coffee cup P2

the coffee cup P1

Would you take me this ?



Limitations of Existing Models
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● GLIP (Grounded Language-Image Pretraining) [Li+, 2022] :
A phrase grounding model trained on large-scale image-caption pairs with 
direct references.

Cited from [Li+, 2022].

https://arxiv.org/abs/2112.03857
https://arxiv.org/abs/2112.03857


Limitations of Existing Models
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● In dialogue parsing, GLIP struggles with:
○ Resolving direct references made via pronouns 
○ Parsing indirect references involving ellipses

this

take
NOM, DAT



Limitations of Existing Models
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● In dialogue parsing, GLIP struggles with:
○ Resolving direct references made via pronouns 
○ Parsing indirect references involving ellipses

this

take
NOM, DAT

Phrase grounding results of GLIP

Japanese Dialogues
[Ueda+, 2024]

Performance 
gap

Japanese Captions
[Nakayama+, 2020]



Limitations of Existing Models

9

● In dialogue parsing, GLIP struggles with:
○ Resolving direct references made via pronouns 
○ Parsing indirect references involving ellipses

this

take
NOM, DAT

…

Thank you !

P1: Person1 P2: Person2

Not at all.

Yes. The coffee cup, 
right ? 

FPV of the System

Would [you] take [me] this ?

Pro-drop languages, such as Japanese, often omit subjects and objects.

 [ΦNOM ] これを

[ΦDAT] 取って頂けますか ?



Limitations of Existing Models
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● In dialogue parsing, GLIP struggles with:
○ Resolving direct references made via pronouns 
○ Parsing indirect references involving ellipses

this

take
NOM, DAT

By resolving these ambiguities, 
we aim to improve the understanding of real-world dialogues.

…

Thank you !

P1: Person1 P2: Person2

Not at all.

Yes. The coffee cup, 
right ? 

FPV of the System

Would [you] take [me] this ?

 [ΦNOM ] これを

[ΦDAT] 取って頂けますか  ?



Using Textual Reference Relations 💡
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By incorporating textual references, we can improve MRR performance.

is known,
the coffee cup

this
this can be uniquely identified.e.g.)

…

Thank you !

P1: Person1 P2: Person2

Not at all.

Yes. The coffee cup, 
right ? 

FPV of the System

PAS (DAT Case)Coreference (=)
this

PAS (ACC Case)PAS (NOM Case)

take take take
the coffee cup P2

the coffee cup P1

Would [you] take [me] this ?

If



Proposed Framework 💡

12

Text
Encoder

Would you take 
me this ?

Text 

Yes. The coffee cup

Seq. of Images
…

take me this  …  coffee …

…

Object
Detector

Decoder Blocks

take

me

this

C
ross-A

ttn

FFN

Layer N
orm

S
elf-A

ttn

take …

Sim. matrix 
(phrase to phrase)

me

this

take me this coffee

Sim. matrix 
(phrase to objects)

… …
…

We propose a framework to jointly model TRR and MRR.

DAT

=

ACC

ACC

=

Learning to align phrase embeddings 
with object features

DAT …



Step1: Textual Reference Resolution
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Text
Encoder

Would you take 
me this ?

Text 

Yes. The coffee cup

Seq. of Images
…

take me this  …  coffee …

…

Object
Detector

Decoder Blocks

take

me

this

C
ross-A

ttn

FFN

Layer N
orm

S
elf-A

ttn

take …

Sim. matrix 
(phrase to phrase)

me

this

take me this coffee

Sim. matrix 
(phrase to objects)

… …
…

We propose a framework to jointly model TRR and MRR.

DAT

=

ACC

ACC

=

DAT …

Focusing on the similarity between 
phrase embeddings



Step2: Multimodal Reference Resolution
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Text
Encoder

Would you take 
me this ?

Text 

Yes. The coffee cup

Seq. of Images
…

take me this  …  coffee …

…

Object
Detector

Decoder Blocks

take

me

this

C
ross-A

ttn

FFN

Layer N
orm

S
elf-A

ttn

take …

Sim. matrix 
(phrase to phrase)

me

this

take me this coffee

Sim. matrix 
(phrase to objects)

… …
…

We propose a framework to jointly model TRR and MRR.

DAT

=

ACC

ACC

=

Focusing on the similarity between 
phrase embeddings and object features

DAT …

Fine-tuning from Step1

Weights frozen



Phrase Grounding Results
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● Compared models:
○ Baseline
○ Baseline w/ Ours
○ Baseline w/ KWJA [Ueda+, 2023]

○ GLIP

Phrase grounding model with coreference resolution 
(fine-tuned on Japanese data  [Nakayama+, 2020, Ueda+, 2024])

Pre-trained on English data [Krishna+, 2017, Hudson+, 2019] 

Japanese Dialogue (Overall, 996) Japanese Dialogue (Pronouns, 120/996)

Baseline w/ Ours achieved improved pronoun phrase grounding 
through coreference resolution.



Phrase Grounding Results
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● Compared models:
○ Baseline
○ Baseline w/ Ours

Can you put [the water] in here
since it comes up ? 

Instant 
noodle 

here: 0.66

Baseline

here: 1.00

Baseline w/ Ours

Coreference resolution strengthens confidence scores 
in pronoun-to-object predictions.

Japanese 
omits [ ] phrases.

Phrase grounding model with coreference resolution 
(fine-tuned on Japanese data  [Nakayama+, 2020, Ueda+, 2024])



Multimodal Reference Resolution Results
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● Compared models:
○ Baseline
○ Baseline w/ Ours
○ Baseline w/ KWJA [Ueda+, 2023]

Indirect (Predicate-argument structure) Indirect (Bridging anaphora)

Improved indirect reference performance 
through textual reference resolution.

MRR model with TRR 
(fine-tuned on Japanese data [Ueda+, 2024])



Multimodal Reference Resolution Results
● Compared models:

○ Baseline
○ Baseline w/ KWJA [Ueda+, 2023]

peel: 0.46
cut: 0.46

peel: 0.28
cut: 0.28

Fried egg

peel: 1.00
cut: 1.00

peel: 0.99
cut: 0.99

Baseline Baseline w/ KWJA

TRR strengthens confidence scores for predicates. 18

Shall we peel both [the apple and the banana]? 
Then, let’s cut [them] into portions for three people.

Japanese 
omits [ ] phrases.

MRR model with TRR 
(fine-tuned on Japanese data [Ueda+, 2024])



Can you put [the water] in here
since it comes up ? 

Conclusion
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Purpose :

Main Results :

Idea💡:

● Through resolving ambiguities in visually-grounded dialogues, 
we aim to improve the understanding of real-world dialogues.

● We propose a framework to jointly model textual 
reference resolution (TRR) and multimodal 
reference resolution.

● Improved pronoun phrase grounding through
coreference resolution.

● Improved indirect reference performance through 
TRR.

Instant 
noodle 

here: 1.00


