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Understanding References in Dialogue Text

e TRR: Textual Reference Resolution:
o Identify textual reference relations between phrases

o TRR consists of coreference resolution, analysis
and resolution.
P1: Person1 PZ: Person2
Would you me this ? Yes. The coffee cup,
right ?
Thank you! Not at all.
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Example of the system analyzes a two-person dialogue



Understanding References in Visually Grounded Dialogues

e MRR: Multimodal Reference Resolution [ueda+, 2024 :
o ldentify phrase-to-objects reference relations
o Direct reference and

P,: Person1 = P,: Person2
Would you me this ? Yes. The coffee cup,
right ?
Thank you! Not at all.
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Example of the system analyzes a two-person dialogue
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Phrase grounding [Plummer+, 2015] refers to the task
of predicting only this type of reference.

Direct reference

P1: Person1 ' PZ: Person2
Would you me this ? Yes. The coffee cup,
right ?
Thank you! Not at all.
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Why is MRR important?

MRR enables systems to understand dialogue events

— such as "who what to whom"— linked to real-world objects.
P,: Person1 = P,: Person2
Would you me this ? Yes. The coffee cup,
right ?
Thank you'! Not at all.
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Limitations of Existing Models

e GLIP (Grounded Language-Image Pretraining) [Li+, 2022] :
A phrase grounding model trained on large-scale image-caption pairs with

direct references.
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Limitations of Existing Models

e In dialogue parsing, GLIP struggles with:
o Resolving direct references made via pronouns
o Parsing involving



Limitations of Existing Models

In dialogue parsing, GLIP struggles with:
o Resolving direct references made via pronouns

Performance
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Limitations of Existing Models
e In dialogue parsing, GLIP struggles with:

o Parsing involving > an
P,: Persont = P,: Person2
Would [you] [me] this ?
[P o ] =%

[y ] B CTHFET 2
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Pro-drop languages, such as Japanese, often omit subjects and objects.



Limitations of Existing Models

e In dialogue parsing, GLIP struggles with: | .
o Resolving direct references made via pronouns this = W
. . . . .
o Parsing involving = A
1.00 J-CRe3  Flickr30k-Ent-JP
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0.50 ﬁ - |
| [, ] CE
0.25 [CDDAT] NOM BHES B 2 _J
0.00 : ’ _ ! S
Recall@1 Recall@10 !El!

By resolving these ambiguities,

we aim to improve the understanding of real-world dialogues.
10



Using Textual Reference Relations
By incorporating textual references, we can improve MRR performance.

(=

the coffee cup

. . - & . . . g
e.g.) If " & . Isknown, iis =w can be uniquely identified.
P,: Persont = P,: Person2
Would [you] [me] this ? Yes. The coffee cup,
right ?
Thank you'! Not at all.
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Proposed Framework

(1[[=4

We propose a framework to jointly model TRR and MRR.

Learning to align phrase embeddings
with object features
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Step1: Textual Reference Resolution
TRR

Focusing on the similarity between
phrase embeddings
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Step2: Multimodal Reference Resolution

Fine-tuning from Step1

MRR

Focusing on the similarity between
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Phrase Grounding Results

e (Compared models:

o O O O

) Phrase grounding model with coreference resolution
Basel!ne (fine-tuned on Japanese data [Nakayama+, 2020, Ueda+, 2024])
Baseline w/ Ours

Baseline w/ KWJA [ueda+, 2023]

GLIP = Pre-trained on English data [Krishna+, 2017, Hudson+, 2019]
GLIP Baseline =~ w/ KWJA ® w/ Ours GLIP Baseline =~ w/ KWJA ® w/ Ours
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Baseline w/ Ours achieved improved pronoun phrase grounding
through coreference resolution.
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Phrase Grounding Results

¢ Compared models: Phrase grounding model with coreference resolution
© Baseline / (fine-tuned on Japanese data [Nakayama+, 2020, Ueda+, 2024])
o Baseline w/ Ours

Baseline Baseline w/ Ours
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Can you put [the water] in here Japancse
since it comes up ? omits [ ] phrases.

Coreference resolution strengthens confidence scores
in pronoun-to-object predictions.
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Multimodal Reference Resolution Results

e Compared models:
o Baseline MRR model with TRR

o Baseline w/ Ours (fine-tuned on Japanese data [Ueda+, 2024])

o Baseline w/ KWJA [ueda+, 2023]

Baseline =~ w/ KWJA ® w/ Ours Baseline =~ w/ KWJA ® w/ Ours
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Indirect (Predicate-argument structure) Indirect (Bridging anaphora)

Improved indirect reference performance
through textual reference resolution.
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Multimodal Reference Resolution Results

e Compared models:
o Baseline
o Baseline w/ KWJA [ueda+, 2023] <——

MRR model with TRR
(fine-tuned on Japanese data [Ueda+, 2024])

Baseline w/ KWJA

i

i 5

‘sl A\
cut: 1.00 W 3
peel: 0.99
) cut: 0.99
Shall we peel both [the apple and the banana]? Japanese
Then, let’s cut [them] into portions for three people. omits [ ] phrases.

TRR strengthens confidence scores for predicates.
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Conclusion

Purpose :

Idea

Main Results :

=

We propose a framework to jointly model textual
reference resolution (TRR) and multimodal &

Through resolving ambiguities in visually-grounded dialogues,
we aim to improve the understanding of real-world dialogues.

reference resolution. Instant
- ¢, noodle

Improv ronoun phr rounding through

pro ed pronou p ase grou d 9 oug Can you put [the water] in here
coreference resolution. since it comes up ?
Improved indirect reference performance through )

TRR. v .



